Medical Air Systems for Healthcare Facilities

Medical air systems are a vital component of all hospitals and most other healthcare facilities. The engineer must consider expense, capacity, physical size and weight, space limitations, and mechanical and electrical utility availability in choosing a system for a particular project. It is important to coordinate the equipment selections with the owner in addition as other engineering and architectural disciplines.

The first priority is life safety. Medical air is used for respiratory therapy and calibration of medical devices for respiratory application. Providing clean, oil-free air is mandatory. The medical air system should not be used to supply air for any other purpose (e.g., hospital laboratory use) because of the opportunities for contamination of the dispensing system. If a patient inhales medical air polluted by oil from a defunct compressor or nitrogen from a brazing purge, the consequences could be irreversible. In addition, a utility or pipeline shutdown must be coordinated with the hospital staff to prevent an accidental service termination while patients are connected to the system. Engineers should be aware of the requirements before designing any medical gas system.

dispensing Systems

Medical compressed air systems must intended to prevent the introduction of contaminants or liquid into the pipeline. Medical air systems must:

• be supplied from cylinders, bulk containers, or medical air compressor supplies; or reconstituted from oxygen USP and oil-free, dry nitrogen

• meet requirements of the medical air

• contain no detectable liquid hydrocarbons

• contain fewer than 25 ppm gaseous hydrocarbons

• contain 5 mg/m3 or less of long-lasting particulates sized 1 micron or larger at normal atmospheric pressure.

In a typical fully functioning healthcare facility, the medical air is supplied by a high-pressure cylinder manifold system or a medical air compressor system. Manifold dispensing systems typically are used in facilities that have very little need for medical air. Medical air compressor plants typically are for larger facilities.

Existing facilities may choose to upgrade their equipment and associated pipeline or add medical air plants as the facility expands. When selecting a piece of equipment for a new facility, the possibility of future expansion should be considered. To allow for future growth, it is good practice to be conservative in sizing a system.

Duplex Medical Air Compressor Source Systems

An engineer usually has more options obtainable when designing for a new facility than for a renovation or substitute project. Electrical and mechanical utilities can be more easily calculated, and chilled water, ventilation, and electrical sets can be sized and adequately located. The ideal schematic design contains a well-ventilated, easily easy to reach mechanical room dedicated to medical gas equipment.

In selecting a medical air compressor for an upgrade, the engineer may have some trouble due to mechanical utility inefficiencies (e.g., poor chilled water quality, a poorly ventilated mechanical space). The local electric utility may not sustain the pump arrangement, or poor equipment access may require breakdown of equipment parts at a meaningful cost increase. It is imperative to conduct thorough surveys of the surrounding mechanical space and utilities before calculating the best kind of compressor for the project.

It is a good idea to select more than one kind of compressor at the schematic design phase. You should develop a master plan that shows existing need and estimated spare capacity. The owner may want to acquire a cost calculate before making a final decision.

Types of Compressors

All medical air compressors must be able to deliver compressed air that does not contain oil. This article specifically deals with medical air systems for Level 1 hospitals.

There are three permissible types:

• Oil-free compressors: These reciprocating compressors have no oil film on surfaces exposed to air being compressed. They do have oil in the machine and require separation of the oil-containing section from the compression chamber by at the minimum two seals. The interconnecting shaft and seals must be visible without disassembling the compressor.

• Oilless compressors: These reciprocating or rotary-scroll compressors do not have oil in the machine. Lubrication is limited to seal bearings.

• Liquid ring pump: These rotary air compressor pumps have a water seal. It is recommended that a heat exchanger be utilized to conserve seal water.

Medical air compressor plants should be sized to serve peak calculated need when the largest compressor is out of service. In an efficient design of a larger system (i.e., three pumps or more), each compressor is sized to manager an equal percentage of the peak need and create redundancy. There never should be fewer than two compressors.

Accessory Equipment

Several pieces of mechanical equipment join the medical air compressor system:

• Intake: The compressor’s air intake must be located outdoors, above roof level, and at the minimum 10 ft from any door, window, other intake, or other opening. Intakes must be turned down, screened, and equipped with intake filter mufflers. These filters remove large amounts of particulates (microscopic particles of substantial or liquid matter suspended in the air) and contaminants at the compressor inlet.

• Air receiver: The role of the air receiver is to store air and balance pressure variations. It must have a complete-size bypass in addition as a manual and automatic drain to remove any collected condensate. It must meet American Society of Mechanical Engineers ( https://asme.org ) Section 8 boiler and pressure canal construction standards. The receiver is sized based on system need, compressor size, and compressor running times.

• Compressed air dryer: The dryer is used to remove water vapor from the air stream. At a minimum, it must be a duplex system valved to allow one unit to be serviced. Dryers should be of the desiccant twin-tower kind, sized for 100% of calculated load at design conditions. They should be rated for 32°F (0°C).

• Duplex final filters: These should be rated for 100% system capacity, with a minimum of 98% efficiency at 1 micron or greater. The filter must be equipped with a visual indicator showing the remaining filter component life.

• Medical air regulators: Regulators control the pressure of the air system. They should be sized for 100% of the system’s peak calculated need at design conditions. Pressure regulators should be set to provide the most distant outlet with 50-psig medical air.

• Alarm sensors: A medical air compressor must have alarm sensors located nearby where they can be continuously observed by hospital personnel. Typical alarms are for high pressure, low pressure, and other trouble (e.g., rule/lag pump operation, high temperature, high dew point, carbon monoxide). Additional alarm signals can be additional depending on the kind of compressor and the owner’s preference.

• Anti-vibration mountings: These should be provided for the compressors, receiver, and dryers, as required by the manufacturer.

Piping

Medical air piping is sized according to the calculated flow rate in cubic feet per minute (cfm). Compressed air piping is constructed of brazed kind-L copper prepared for oxygen service. The piping must be pitched toward the central plant, have drains at low points and it must be valved and identified.

The flow rate for medical air outlets generally is 1 cfm. The pipeline flow rate is calculated by counting the number of connected medical air outlets and applying a use factor. The flow rate from the total number of outlets is called the total connected load. Because not all outlets are typically used at the same time, a at the same time use factor should be applied to reduce the system flow rate. The rate is then applied to the sizes of the pipeline and compressors. The American Society of Plumbing Engineers ( https://aspe.org/ ) has developed a table that quantifies medical air usage in different areas of the hospital.

When the total connected load has been calculated and the use factor has been applied, the main pipeline and compressor equipment can be effectively sized and chosen.

In summary, engineers must take care when sizing and specifying medical air equipment to meet the needs of the healthcare facility and its patients. Before beginning a project, be sure to review the requirements pertaining to medical gas systems of the most recent codes. Both the information at hand and technology are developing on a daily basis, and it is the engineer’s responsibility to be informed.

Leave a Reply